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Using Remote Sensing and Spatial

Models to Monitor Snow Depth and
Snow Water Equivalent

Richard E.J. Kelly, Alfred T.C. Chang, James L. Foster and Dorothy K. Hall

3.1 Introduction

Snow cover is an important hydrological parameter in the global water cycle. By influencing
directly the dynamics of the global water cycle, snow cover has an important control on
climate through its effect on energy budgets at the surface and lower atmospheric levels
(Cohen, 1994). Therefore, for climate change studies, our ability to estimate global coverage
and volumetric storage of water in seasonal and permanent snow packs impacts directly on
the ability to predict changes in climate from year to year and over longer periods. At a more
local scale it affects the ability to budget effectively for water supply. With the continued
growth in both direct and indirect evidence of climate change, plus the increasing stresses
placed on the water cycle by climate change, there is a pressing need to quantify accurately
at different space and time scales, the various components of the hydrological cycle.

Earth observation has been used to monitor continental scale seasonal snow cover area for
25 years and much of this effort has focused on the use of visible and infrared sensors (e.g.
Hall et al., 2002a). Research suggests that snow cover extent in the Northern Hemisphere
has decreased by 10% since 1966 when visible/infrared sensors were first available for
use (Robinson, 1999). However, little information is available on changes of snow water
equivalent (SWE) at hemispheric scale over a similar time period. The instruments capable
of estimating SWE have been available for a shorter period and, more importantly, the
methodologies available to estimate successfully global SWE are still in an evolutionary
phase. Therefore, in hydroclimatology and climate change studies, the representation of
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snow is often parameterized implicitly in climate models, perhaps as a sub-component of
the model, and often at very coarse spatial scales (Foster et al., 1996) that generalize SWE
characteristics at grid scales of several degrees latitude/longitude in size. Satellite passive
microwave estimates of snow have spatial resolutions an order of magnitude better than
this. Therefore, there is an increasing need to refine methods that can provide an accurate
estimation of global SWE from passive microwave sensors at spatial scales that reflect
snow spatial distribution characteristics better.

Regionally calibrated approaches to SWE and snow depth estimation have been shown to
work reasonably well in relatively homogeneous snow-covered areas where terrain effects
are well understood (Tait, 1997; Goodison and Walker, 1994). However, in general, there
is some doubt whether single regional approaches are applicable at the global scale where
snow pack, land cover and terrain characteristics are more heterogeneous in nature. Thus,
while the development of SWE and snow depth estimation methods has advanced in the
regional domain, improvements at the global scale to estimate SWE or snow depth have
been slower. Furthermore, where global studies have sought to estimate global snow volume
(e.g. Chang et al., 1987), the approach taken often has been static and formulated using
‘average’ seasonal snow pack conditions at parameterization. While these global approaches
yield reasonable snow volume retrievals when integrated over large spatial and seasonal
scales, local/regional instantaneous estimates can be subject to 30–50% errors or more
(Hallikainen and Jolma, 1992), although there is large uncertainty associated with these
errors. Nevertheless, the predicted errors are large, even for climate model inputs, suggesting
that snow volume estimates are often unreliable for catchment-based studies. It is apparent,
therefore, that approaches for the estimation of snow volume from passive microwave
data need to be advanced into more spatially and temporally dynamic methodologies that
represent snow pack processes better and should, therefore, reduce the errors of estimates.
This chapter explores the possibilities and practicalities of using hydrological models of
snow pack properties and radiative transfer models of microwave emissions from snow
to assist with the estimation of snow volume on a global scale. We begin by discussing
the character of snow depth and SWE spatial distribution before describing the current
approaches of snow volume estimation from passive microwave instruments. The issue
of the determination of errors linked to snow volume estimates is also addressed towards
the end of the chapter; these errors are increasingly important but probably even less
straightforward to derive. The chapter then concludes with some remarks about future
directions.

For clarity, in this chapter we use the term snow cover as a synonym for snow cover
area extent. Mostly, however, the chapter is concerned with the estimation of SWE (mm)
or snow depth (cm) per unit area. While these two are related through the snow density,
they are different and can have different seasonal characteristics.

3.2 Modelling Spatial Variation of Snow Depth/SWE Using
in Situ Snow Measurements

Walsh (1984) created a generalized map representation of the spatial distribution of global
snow cover. Qualitative maps are useful for providing generalized representations of the
location and climatological persistence of snow cover area. More recently, efforts are
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underway to build quantitative maps of global snow cover occurrence using satellite-derived
estimates of snow cover (e.g. Frei and Robinson, 1999, Hall et al., 2002b). However, there
is far less information available about the scale of spatial variation of snow depth or SWE.
We know that snow depth or SWE varies in a snowfield for a variety of reasons (topography,
vegetation, meteorology) but how can this ‘spatial dependency’ be defined and how might
it vary through space? Field experiments that measure snow pack properties are often con-
ducted at local scales of a few kilometres and the data are usually gridded and interpolated
to produce maps of snow depth or SWE. Snow maps are then used directly in hydrological
models or to test snow depth or SWE estimates from aircraft instruments. Few studies have
formally quantified the spatial variability of snow depth or SWE at large regional or global
scales. Brasnett (1999) used global snow depth data in the operational analysis of snow
depth at the Canadian Meteorological Centre and showed how its inclusion in the analysis,
through spatial interpolation, improved the overall analysis of snow. However, quantitative
information about the spatial variability of these data was not reported. It is important,
therefore, to determine the characteristic scales of spatial variation of snow depth or SWE
in continental snow packs before we attempt to monitor snow from space.

It is known that large spatial and temporal variations exist in global and local snow
cover extent and volume (Frei and Robinson, 1999) and characterization of these variations
is important for effective climate prediction. Spatial scales of snow cover variation were
identified by McKay and Gray (1981) who characterized snow cover distribution in terms
of regional variations (up to 106 km2), local variations (102 to 105 km2) and micro-scale
variations (10 to 102 km2). Regional scales of snow cover distribution are controlled by
latitude, elevation and orographic effects, local-scale distributions are controlled by local
topographic effects such as slope and aspect and by land cover type, and micro-scale vari-
ations tend to be influenced by local transport factors such as wind redistribution (McKay
and Gray, 1981). This description provided by these authors is a good starting point for
understanding the nature of SWE and snow depth variation.

Snow depth and SWE can be measured directly on the ground using measurements at a
point or over a limited area of a few metres with a snow pillow. In general, point measure-
ments of snow depth or SWE produce high quality data with small location and magnitude
errors. However, the spatial representativeness of these points is uncertain at larger distance
scales. The only way to attempt the characterization of snow depth or SWE spatial vari-
ability necessarily relies on point measurements, usually made at official meteorological
station networks and volunteer networks. Very few datasets that characterize snow cover
distribution over all spatial scales are available to confirm the McKay and Gray classifi-
cation. Data tend to characterize the local to regional scales with micro-scale variability
snow depth or SWE observations available only at specific locations and often over short
periods of time. Figure 3.1 shows three spatial scales of operational or routine snow depth
measurement networks. At each site, accumulated snow depth is measured with a graduated
ruler and SWE is calculated from the measured average snow depth and snow density. If no
data are recorded, generally it is assumed that there was no snow present. Figure 3.1a shows
World Meteorological Organization (WMO) station sites in the Global Telecommunica-
tions System network in the northern hemisphere that reported snow depth greater than 2
cm during the 2000–2001 winter season. These data are freely available from the National
Climate Data Center in the USA. The maximum spatial density of measurements is 1 site
per 40 km2 although the average density is 1 site per 160 000 km2. Figure 3.1b shows the
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a. 

. b

Figure 3.1 Maps of three different snow depth measurement networks: (a) represents the
number of stations in the WMO GTS network on 2 February 2001 (maximum snow extent);
(b) represents the total COOP station network; (c) represents the FSU network

active cooperative station network (COOP) for the contiguous states in the USA. These
data are available from the National Oceanic and Atmospheric Administration and have a
maximum and mean density of 1 site per 0.26 km2 and 1 site per 1600 km2, respectively.
Figure 3.1c shows the station locations of snow depth observations from the former Soviet
Union (FSU) for 10 February, 1989. The FSU data are available from the National Snow
and Ice Data Center and have a maximum and mean density of 1 site per 0.4 km2 and 1 site
per 14 000 km2, respectively. Using the average spatial densities (rather than the maxima),
these area densities translate to scale lengths of 1 station per 40 × 40 km, 118 × 118 km
and 400 × 400 km for the USA, FSU and WMO datasets, respectively. Therefore, based on
McKay and Gray’s specification, potentially the datasets are the most representative at local
to regional scales. (It is tempting to consider that the COOP data provide a good opportunity
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to investigate highly local-scale or even micro-scale spatial variability. However, the actual
number of stations regularly reporting snow depth or SWE is rather less than this average
figure suggests.) To further investigate the spatial variability of snow depth or SWE, the
analysis of snow depth variograms was undertaken.

Intuitively, there is an inherent spatial dependence of snow depth or SWE in a snow
field because locations closer together tend to be more similar than those further apart (see
Tobler’s first Law of Geography). This concept can be used to encapsulate the micro-scale
of SWE or snow depth variation. ‘Spatial similarity’ of snow depth also can be present over
greater distances on account of local or regional controls on snow accumulation (in moun-
tainous terrain or along the track of a snow storm). In other words, spatial autocorrelation
of snow depth is probably present at different scales from micro-scales through to broad
regional scales. Quantification of the spatial dependence of a variable may be expressed by
the semi-variogram. In statistics, observations of a selected property are often modelled by
a random variable and the spatial set of random variables covering the region of interest is
known as a random function (Isaaks and Srivastava, 1989). In geostatistics, a sample of a
spatially varying property is commonly represented as a regionalized variable, that is, as a
realization of a random function. The semi-variance (γ ) may be defined as half the expected
squared difference between the random functions Z(x) and Z(x + h) at a particular lag h.
The variogram, defined as a parameter of the random function model, is then the function
that relates semi-variance to lag:

γ (h) = 1

2
E[{Z (x) − Z (x + h)}2] (1)

The sample variogram γ (h) can be estimated for p(h) pairs of observations or realizations,
{z (xl + h) , l = 1, 2, . . . , p (h)} by:

γ̂ (h) = 1

2
p(h)

p(h)∑

l=1

{z(xl) − z(xl + h)}2
. (2)

As Oliver (2001) states: “[the variogram] provides an unbiased description of the scale and
pattern of spatial variation”. It is a useful tool, therefore, for analysing the scale(s) of vari-
ation characterized by datasets of measurements of snow depth or snow water equivalent.

Variograms were calculated for measured point snow depth data (cm) for three differ-
ent datasets to investigate spatial dependencies present at different sampling scales. The
three dataset frameworks described in Figure 3.1 (the WMO, COOP and FSU snow depth
datasets) were used to explore the characteristics of snow depth spatial variability in each
dataset. Ideally, datasets containing consistent measurements of SWE should be used, but
globally, they are not available routinely so snow depth records are used. Daily samples of
snow depth from each dataset were selected for northern hemisphere mid-winters (early
February) from the respective archives. Although the same time periods are not represented
in each case, the data provide some sense of spatial variability characterized at each scale
of measurement.

The point snow depth data were projected to the Equal Area Scaleable Earth Grid (EASE-
grid) (Armstrong and Brodzik, 1995) and the variograms computed for 2 February, 2001
(WMO), 10 February, 1990 (FSU), 12 February, 1989 (COOP) and 12 February, 1994
(COOP). The WMO data cover the entire northern hemispehere while the FSU data cover
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Figure 3.2 Variograms of point snow depth variation at three different scales of spatial mea-
surement: (a) WMO GTS snow depth for 2 February, 2001; (b) FSU snow depth for 10 February,
1990; (c) COOP snow depth for 12 February, 1989; (d) COOP snow depth for 12 February, 1994

the region shown in Figure 3.1c. The COOP data were spatially cropped and only data from
the upper mid-west USA, particularly from South Dakota, North Dakota and Wisconsin
were used. The COOP data were refined in this manner to determine their utility for
characterizing micro-scale snow depth variations. Figure 3.2 shows the four experimental
variograms with spherical models fitted using the weighted least squares criterion. The lag
separations chosen were the minimum distances between points in each of the datasets.
The form of the variograms (in particular, that a bounded model provided a good fit in each
case) suggests that a stationary random function model provides an adequate model of the
variation in each case. In particular, trend models were not required. The key elements
of the variogram of interest in this work are the sill, range and nugget variance. The sill
variance determines the amount of variation in the variable (snow depth) and the range
expresses the scale of variation in the variable. The nugget variance (intercept of the model
on the ordinate) represents unresolved variation in the data that cannot be explained by
the model. It can also be attributed to measurement error, or it is caused by uncertainty
in estimating the variogram at short lags or uncertainty in fitting the model at short lags
(Atkinson, 2001). Thus, for a well-structured variogram, at lag distances less than the range,
spatial dependency is present while at lag distances greater than the range there is no spatial
dependency. The reader is directed to other work (e.g. Oliver, 2001; Atkinson, 2001; Isaaks
and Srivastava, 1989) that fully describes these parameters in formal and applied terms.
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Figure 3.2a shows the snow depth variogram for the WMO global dataset. The average
snow depth was 10 cm with a standard deviation of 10 cm. The number of snow depth
reporting sites in this dataset is 1262. The range of the variogram is approximately 3700
km and the nugget and the sill variances are 62 cm2. There is structure evident in the
experimental variogram although the nugget variance is 50% of the total sill variance
suggesting that the structure is not strong. From the interpretation of the variogram of these
data, spatial dependence is evident at lag distances less than 3700 km. However, at local
scales of variation (less than 1000 km lag distances) the sample design cannot effectively
represent the spatial variation of snow depth since the variance of the model is very similar
to the nugget variance at these smaller lag distances. Thus, while interpolation of the point
data is feasible given the apparent presence of spatial dependence, it should be undertaken
only at grid supports of greater than 1000 × 1000 km2 (i.e., at a regional scale); the data
should not be used to represent local scale snow depth varitions.

Figure 3.2b, shows the modelled variogram for the FSU snow depth data. The average
snow depth was 20 cm with a standard deviation of 14 cm and a population of 117 stations.
The variogram structure has good definition and exhibits a reasonably well-defined sill at
a range of approximately 1140 km. The nugget variance is 41 cm2, which although large,
is much less than the sill variance suggesting that a distinct structure is present. Spatial
dependence can be represented at the local scale of variation with these data since strong
spatial dependence is exhibited at distances less than 1100 km. Micro-scale variations,
however, are not represented by this dataset and so interpolation of the data should be
restricted to grid support defined at the local scale.

For the North American COOP data, 283 stations comprised the 1989 data with a mean
snow depth of 16 cm and standard deviation of 19 cm. For the 1994 data there were 281
stations with an average depth of 43 cm and a standard deviation of 23 cm. Figures 3.2c and
d, representing 12 February, 1989 and 1994 data, respectively, show the variograms that
exhibit perhaps the most distinct variogram structures. Clearly defined sills are present in
both variograms with ranges located at approximately 807 and 496 km respectively for the
1989 and 1994 data. The sill variance for the 1989 data (Figure 3.2c) is 570 cm2 while for
the 1994 data the sill variance is 459 cm2. The nugget variance for the 1989 data is 6 cm,
suggesting that very little measurement error affects the data at the micro-scale variation,
and so reasonable representation of the data at this scale is possible. However, for the 1994
data the nugget variance is 161 cm2, which is larger than the 1989 data and indicates that
small, micro-scale variations are less well represented by the variogram. The 1994 dataset
represents effectively snow depth variability only at the local scale.

In the above examples, it is suggested that the ‘standard’ regional datasets are suited to
the characterization of local to regional variations of snow depth (or SWE if available).
While the global dataset showed some evidence of spatial variation at the regional scale,
the spatial structure evident from the variogram was weak and could not be relied upon to
provide a robust characterization of the spatial dependence of snow depth. At the micro-
scale level of variation, the COOP and FSU data showed signs of representing snow depth
variations but only when the average snow depth was shallow, when the snow depth was
deeper, confidence in the representation at this scale was limited. While climate modellers
are interested in snow variations at the local to regional scale, water resource managers are
interested in variations at the local scale and often at the micro-scale of variation. Hence,
although the ‘standard’ available datasets, such as those described above, might be useful
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for local scale applications, it is clear that they are not so useful for the characterization of
micro-scale variations. Furthermore, the data are not available in real or even near-real time
so their utility, potentially, is best suited to ‘off-line’ applications such as climate studies
or the validation or testing of estimates of snow depth from alternative methodologies. For
micro-scale applications or real or near-real time applications, the direct measurement of
snow depth or SWE in these regional datasets is less useful. Instead, hydrologists should
seek direct snow parameter measurements that are made at specific experimental catchments
around the globe (e.g. Marks et al., 2001).

3.3 Estimating Snow Depth and SWE Using Physically Based Models

The previous discussion concentrated on modelling the spatial dependency of snow depth
represented by measurements made at discrete meteorological stations. The basis of the
analysis is the purely spatial relationship of snow depth from one site to another. Several
studies have demonstrated that other terrain and landcover parameters can be incorporated
into statistical models to characterize snow depth or SWE spatial variability. For example,
terrain variables (elevation, aspect, slope) or meteorological variables can be used to assist
in the spatial modelling of snow depth or SWE (e.g. Kelly and Atkinson, 1999; Judson and
Doeksen, 2000; Elder et al., 1998; Carroll and Cressie, 1997). However, these approaches
tend to represent snow depth or SWE at a discrete point or as a point process that repre-
sents a small homogeneous snow plot (e.g. 1 ha or less). The scaling up of these models to
larger-scale applications is uncertain since the relationships in the models are statistically
based and may or may not be applicable at larger spatial scales. To effectively scale
up point snow data an understanding of the snow physical properties and the processes
that govern their evolution in vertical and horizontal space is required. To achieve this
understanding, ideally, spatially dense micro-scale measurements are needed that cover a
reasonably wide area. While this need can be costly to implement, pre-existing catchments
and experimental networks in place have led to some important developments in the field
of snow hydrology modelling and its use in representing micro-scale to local scale snow
processes.

Snow hydrology models tend to be predicated on energy balance dynamics and are usually
driven at a point scale or plot scale by a suite of meteorological variables representative
of micro-scale energy conditions. It is not the purpose here to provide a comprehensive
review of snow hydrology models. Papers by Dozier (1987) and Bales and Harrington
(1995) give full summary accounts of snow hydrology methodologies. A recent paper by
Davis et al. (2001) provides an excellent summary of the issues concerning implementation
and validation of snow model estimates. Using examples from the SNTHERM model
(Jordan, 1991), the paper categorizes snow models into one-dimensional process models
and two-/three-dimensional models. The two-dimensional spatial snow model generally is
considered an implementation of the one-dimensional model applied to individual discrete
spatial domains. One-dimensional models have been validated successfully using discrete
measurements of bulk snow properties (such as snow depth and SWE), and also with
detailed measurements of snow properties (such as snow density and temperature profiles,
snow grain size and spectral reflectance). Snow models at the point process scale are mature
and can represent at least snow depth and/or SWE variables very effectively.
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Extension of the one-dimensional model to two or three dimensions has also progressed.
Much of the development in this field has been through the use of instrumented catchments
that have a high spatial density of meteorological instruments providing fine resolution
inputs to energy balance models of snow. More recently, models have started to expand
the scale to local and regional-sized supports and to examine ways that aggregate meteo-
rological input influence snow distribution (e.g. Luce et al., 1998). As Davis et al. note:
“These efforts begin to provide frameworks for using ground-based observations as vali-
dating data in modelling exercises using large spatial domains” (Davis et al., 2001, p. 278).
Validation of the spatially distributed models requires data on snow extent, SWE, snow
surface temperature, snow surface wetness and texture, all of which are measurable quan-
tities. However, uncertainties associated with the spatial heterogeneity of these variables
make the validation of distributed models a challenging task.

In summary, snow hydrology models appear to be mature in their ability to represent
snow depth or SWE at micro-scales of spatial variation. Given our proven understanding of
the physical processes controlling snow pack development, it seems reasonable to expect
that application of these models to increasing support scales (e.g. local scales) should be
possible. For local scale representation of snow depth or SWE, snow hydrology models
should provide accurate and timely information where appropriate meteorological variables
are collected in a timely fashion for input to the models. However, for global applications
and in many regions of the world, real-time or near real-time meteorological data are not
available routinely or at a frequent enough spatio-temporal resolution. Therefore, local or
regional scale generalized climate model data will need to be used as input for which added
uncertainty is associated (Slater et al., 2000).

3.4 Remote Sensing Estimates of Snow Depth/SWE: Recent Approaches
and Limits to Accuracy

Remote sensing of SWE or snow depth is possible using the detection of naturally upwelling
microwave radiation from the earth’s surface. Progress in recovering snow depth or SWE
from remote sensing instruments has been made through the available ‘instruments of oppor-
tunity’ such as the Scanning Multichannel Microwave Radiometer (SMMR) and the Special
Sensor Microwave Imager (SSM/I). Table 3.1 gives summary information about these in-
struments plus the new Advanced Microwave Scanning Radiometer EOS (AMSR-E) aboard
NASA’s Aqua platform. These instruments are passive microwave systems that measure
naturally upwelling microwave radiation over relatively large instantaneous field of views
(IFOV) (see Table 3.1 for details of the spatial resolution of different sensors). Neither
SSM/I nor SMMR instruments were designed explicitly for snow studies but both have
been found to be effective for snow applications (e.g. Chang et al., 1987; Hallikainen and
Jolma, 1992; Tait, 1997; Foster et al., 1997; Armstrong and Brodzik, 2001). However, the
scale of algorithm implementation has been firmly fixed at the regional to global scales of
snow spatial variation.

The spatial resolution of observation for these microwave instruments varies with the
electromagnetic wavelength or frequency of the observation, as summarized in Table 3.1.
For the SSM/I, for example, at high frequencies (shorter wavelengths) such as 85 GHz, the
spatial resolution is of the order of 13–15 km while the lower frequencies such as 19 GHz,
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Table 3.1 Comparison of Aqua AMSR-E (Chang and Rango, 2000), SSM/I (Hollinger et al.,
1990) and SMMR (Gloersen and Barath, 1977) sensor characteristics

AMSR-E Centre frequency 6.9 10.7 18.7 23.8 36.5 89.0
(GHz)

(launched Band width (MHz) 350 100 200 400 1000 3000
2002)

Sensitivity (K) 0.3 0.6 0.6 0.6 0.6 1.1
IFOV (km2) 76 × 44 49 × 28 28 × 16 31 × 18 14 × 8 6 × 4

SSM/I Centre frequency 19.35 22.235 37.0 85.5
(GHz)

(launched Band width (MHz) 240 240 900 1400
1987)

Sensitivity (K) 0.8 0.8 0.6 1.1
IFOV (km2) 69 × 43 60 × 40 37 × 29 15 × 13

SMMR Centre frequency 6.63 10.69 18.0 21.0 37.0
(GHz)

(1979–1987) Band width (MHz) 250 250 250 250 250
Sensitivity (K) 0.9 0.9 1.2 1.5 1.5
IFOV (km2) 171 × 157 111 × 94 68 × 67 60 × 56 35 × 34

the resolution is of the order of 43–69 km. The spatial scale of observation, therefore, is
firmly fixed in the domain of the local to regional scale of snow variation. These IFOV
dimensions, or footprints, may be considered as averaging cells in that the brightness
temperature of an observation measured at the satellite is an average thermal signal for the
whole area. (In fact, these spatial dimensions represent the approximate 3 dB beamwidth
at the specific frequencies and do not account for side-lobe areas that also contribute to the
final thermal measurement.)

Two recent papers have summarized methods to retrieve SWE or snow depth from
satellite instruments (Derksen and LeDrew, 2000; König et al., 2001) and only a summary
is provided here. In theory, snow acts as a scatterer of upwelling microwave radiation and at
certain frequencies (or wavelengths), the scattering component dominates the overall signal
if the scattering of radiation is greater than the absorption of radiation by a target. When
the snow is thick, the scattering is strong and can be detected at microwave frequencies
greater than 25 GHz. By comparing brightness temperatures detected at the antenna at high
frequencies (potentially scattering dominated) with those brightness temperatures detected
at frequencies less than 25 GHz (absorption dominated), it is possible to identify scattering
surfaces. Generally, the strength of scattering is proportional to the SWE and it is this
relationship that forms the basis for estimating the water equivalent or thickness of a snow
pack. This has been the foundation of satellite passive microwave retrievals of SWE or
snow depth.

Using SSM/I or SMMR instruments, the difference between low (19 GHz) and high (37 or
85 GHz) frequency brightness temperatures can be used to detect the presence of snow.
Several diagnostic tests have been developed to screen for false snow targets such as rainfall,
cold deserts and frozen ground (Grody and Basist, 1996). In addition, a dataset that masks
land and sea is helpful to ensure that false snow targets are identified. Furthermore, a dataset
that maps the ‘climatological (im)possibility’ of snow accumulation has been assembled
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by Dewey and Heim (1981, 1983). Using passive microwave data and the diagnostic tests
of Grody and Basist (1996) along with the ancillary datasets that filter out regions where
snow occurrence is unlikely, the presence of snow at any location in the world can be
estimated. The advantage of the microwave approach is that snow can be mapped at locations
where cloud cover obscures the snow, a perennial problem for visible/infrared wavelength
sensors.

If snow is dry and uniform in density and stratigraphy, then detection of snow is straight-
forward. However, if the snow is stratigraphically complex, shallow or wet, its detection is
more of a challenge. Armstrong and Brodzik (2001) showed that early season underestima-
tion of snow cover area is a problem for passive microwave mapping. By comparing passive
microwave estimates with visible/infrared global snow maps from the NOAA interactive
multi-sensor snow and ice mapping system (IMS) product described by Ramsay (1998),
the under-estimation was clearly evident (Hall et al., 2002a). This area of under-estimation
is sufficient to produce small but significant seasonal differences in snow-covered area
between passive microwave and optical datasets. Figure 3.3 shows an example of this early

a. 

b. 

MODIS only 

MODIS + SSM/I 

SSM/I only 

MODIS + SSM/I 

SSM/I only 

MODIS only 

Figure 3.3 Comparison of ‘static’ SSM/I maximum snow area estimates and MODIS snow
area estimates for 8-day periods in (a) 25 November – 2 December, 2001 and (b) 2 February –
9 February, 2002
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season discrepancy between mapping approaches for SSM/I and MODIS snow mapping
products in the winter of 2001–2002. In Figure 3.3a, the early season shows significant
under-estimation of the snow extent by the SSM/I data compared with the MODIS product.
In Figure 3.3b, for mid-winter, the differences between estimates are smaller as the snow
pack has thickened and a stronger scattering signal is observed by the SSM/I. Improvements
in this mapping capability are expected with the development of the detection algorithms
to AMSR-E data with its increased spatial resolution.

When snow is detected, it is necessary to estimate the SWE or snow depth and it is
important to recognize that the estimation of SWE is the goal of most snow hydrological
applications. This raises an important issue because the microwave response to a snow pack
is sensitive to the bulk snow water equivalent. If, on the other hand, the snow pack can be
characterized by a single homogeneous layer that has a constant density, the microwave
response is sensitive to the snow thickness (assuming no free liquid water is present).
The problem, however, is that most snow packs exhibit some form of layering so the
density is variable both spatially and through time. The implication, for example, for
two snow packs of identical thickness but with different stratigraphies (and bulk density)
is that the microwave response will be different for each (Ulaby and Stiles, 1980). It
seems reasonable to surmise, therefore, that passive microwave retrieval schemes should be
focused on estimating SWE. However, the availability of reliable high quality ground-based
measurements of SWE for validation is very poor, especially over large regions. Conversely,
there are relatively abundant datasets of snow depth available for studies over selected larger
areas. This fact produces a methodological dilemma for hydrologists: should they attempt
to estimate SWE or snow depth? If they develop algorithms to estimate SWE, how are
they to be validated over large regions? Alternatively, if the scientists opt to estimate snow
depth, for which there are more spatially intensive datasets available, are they sacrificing
estimation accuracy to estimate a variable that is only indirectly related to the microwave
emission? In section 3.2 above, the average global density of snow depth recording stations
was reported as 1 site per 160 000 km2. Most of these WMO sites do not record SWE.
The historical and regional FSU dataset reported SWE measurements routinely, but the
USA COOP data consist of only snow depth. During validation of large-scale global re-
trieval algorithms, error metrics tend to be calculated for differences between areal mi-
crowave snow depth estimates and point snow depth estimates rather than differences in
SWE since snow depth measurements have been the only potentially reliable, widespread
data source available at this scale. Scientists who have chosen to estimate SWE have done
so often with access to supporting SWE measurements at their scales of interest. These
SWE estimation algorithms either have been developed for regional studies (e.g. Canadian
prairies) or they have been developed for limited life experimental projects (e.g. BOREAS).
For routine regional and global studies, these datasets are not available and so the estimation
schemes tend to focus on estimating snow depth.

For satellite estimates, historically, most SWE or snow depth retrieval schemes have
been based on some empirical formulation similar to the approach developed by Chang
et al. (1987). In this approach single, homogeneous layered snow depth was expressed as
a function of the horizontally polarized brightness temperature calculated from radiative
transfer theory. The result of this experiment was a simple linear expression such that:

SD = a(�TB) + b [cm] (3)
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where SD is snow depth, b is generally regarded as zero and a = 1.59 cm K−1 and the
assumption is made that the snow grain radius is 0.3 mm and snow density is 300 kg m−3. If
SWE is required in the retrieval, the units become mm and the a term is 4.8 mm K−1 for the
same form. �TB represents the difference in brightness temperature between 19 GHz and
37 GHz channels at horizontal polarization or Tb19H and Tb37H, respectively. This model
works well under simple snow conditions (single uniform layer) and where the terrain
is flat and unforested. In locations where the snow physical characteristics conform to
these parameter values, reasonable results are obtained, namely locations where the snow
is characterized by a grain radius of 0.3 mm or bulk density of 300 kg m−3. At the regional
to global scale, the model parameters can be considered an average global seasonal grain
size and density so at the average global seasonal scale, the results ought to be ‘reasonable’
(accepting that snow maps tend to underestimate). However, where these parameters are
not locally representative at a given time, retrieval errors of between 10 to 40 cm snow depth
or more can be expected. If hydrologists are interested in instantaneous local estimates,
refinements to this approach are essential. Chang et al. (1996) included a forest cover
compensation factor in their updated algorithm and Foster et al. (1997) made progress
to spatially vary the coefficient a in equation (3) at broad continental scales. However,
refinements are still required to reduce the errors further and improve the potentially utility
of the data.

3.4.1 Spatial Representivity of SSM/I Snow Depth Estimates:
An Example

To compare the spatial variability of snow depth estimates from an SSM/I algorithm with
measured station snow depth, two datasets were generated consisting of global snow depth
and local snow depth estimates from SSM/I data. Using the Foster et al. (1997) algorithm,
snow depth was estimated for global snow cover on 2 February, 2001 and for the Red River
catchment, located in the mid-western United States of America, for 28 January, 1994. The
Red River estimates do not coincide exactly with the COOP station data for 12 February,
1994 but they are within approximately 2 weeks and it is known, from station records, that
conditions did not change dramatically over this period. Assessment of the similarities in
variogram structure between station data and remote sensing data should determine whether
any conclusions could be drawn about the relative spatial representativity of each dataset.

Figure 3.4a and b show the variograms for the 2 February, 2001 global data and the 1994
Red River datasets respectively. In general, it is noticeable that in both cases the experimental
variogram data are much smoother in character than the data for the discrete points for the
same dates shown in Figure 3.2a and d. For the global data in Figure 3.4a, there is evidence
of nested variation in the data, that is, variation of snow depth that occurs over different
spatial scales (see Oliver, 2001, for details about nested variation). In essence, the nested
variation is modelled by the variogram and produces breaks of slope at 108 km, 448 km
and 1952 km. Figure 3.4a, therefore, could be decomposed into three separate variograms
each having ranges of 108 km, 448 km and 1952 km relating to different scales of snow
depth variation. Each variogram would represent the variation at these different spatial
scales. The two smaller scales of variation (108 km and 448 km) represent local scale
spatial variations of snow depth, probably caused by vegetation or topography controls.
The larger-scale variation, represented by the sill with a range of 1952 km, is probably
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Figure 3.4 Variograms of ‘static’ SSM/I snow depth estimates for (a) global snow depth on
2 February, 2001 and (b) Red River area snow depth for 28 January, 1994

caused climate controls. Thus, the variogram structure implies that an SSM/I map of snow
depth for this date would contain information at the local to regional scales of variation.
In addition, comparison of Figure 3.4a with Figure 3.2a shows that the spatial detail in the
SSM/I estimates are finer than those found in the station data; the sampling density of the
station data are not capable of resolving different scales of variability identified by McKay
and Gray (1981). Furthermore, the variogram structures are quite different in character and
the snow depth semivariances in the discrete data are at least an order of magnitude greater
than those in the SSM/I data. This implies that the spatial variation is greater for the station
data than for the remote sensing estimates, a feature that is not unexpected given the spatial
smoothing implicit in the SSM/I estimates. The discrete data variogram in Figure 3.2a has
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sill at a range of 3703 km but only a weak variogram structure can be discerned as noted in
section 3.2. In this case study, therefore, the SSM/I snow depth estimates appear to represent
more effectively and perhaps more accurately (although this cannot be stated conclusively)
the spatial variability of snow depth at the global scale.

Figure 3.4b shows the variogram of snow depth for the Red River basin area for 1994.
Since the COOP data are more spatially intensive than the WMO data, similarities between
remote sensing and station data should be evident. In Figure 3.4b the variogram range is
located at 533 km while in Figure 3.2d it is estimated at 496 km. Given the homogenous
nature of the terrain in this region (Josberger and Mognard, 2002), it is suggested that little
or no nested variation should be present in the variogram, which is indeed the case. For the
same reason as before, a major difference between variograms is that the semivariance in
the station data is four to five times greater than the semivariance in the SSM/I estimated
snow depth data. At this scale of variation, the SSM/I estimates appear to be reasonable and
comparable with the station data which are capable of representing snow depth variations
at the given sampling spatial density.

From these two case studies, it appears that the SSM/I is capable of representing snow
depth at spatial variations ranging from local scale to regional and global scales. The station
data, however, are only good at representing snow depth at local scales. This is an important
conclusion since it impacts directly on how global snow depth or SWE algorithms might
be tested or even validated (see below). Whether or not the passive microwave estimates
are ‘good enough’ is an issue that cannot be addressed here. All we can say is that the
scale of variability appears to be reasonable based on our understanding of how snow
cover varies in space. Given the local scale comparisons of SWE or snow depth based on
recently developed snow depth or SWE algorithms, it is very probable that the passive
microwave estimates need improvement before they are adopted by hydrologists. To begin
improvement, therefore, the algorithms need to be made more dynamic and sensitive to
those changing snow pack properties that affect the microwave emission signal in both in
space and time.

3.5 Improving Estimates of Snow Depth/SWE at All Scales: Combining
Models and Observations

It is apparent that different approaches to SWE or snow depth estimation work best at differ-
ent spatial scales. While the physically based energy balance approaches are accurate at the
micro-scale of variation, their performance at local to regional scales is uncertain. Remote
sensing approaches, however, while not capable of producing estimates at the micro-scale,
are able to estimate SWE successfully at local scales. At regional scales there is some un-
certainty about their performance in general which is related to the static nature to date of
the developed algorithms. To improve the SWE or snow depth estimates at regional scales,
there are three possible approaches that could be taken. First, the application of snow pack
energy balance models at large scales with climate models forcing as input can be devel-
oped, and second, the application of microwave remote sensing algorithms can be improved
with dynamic parameterization schemes added. Third, and perhaps optimally, a combina-
tion of these two approaches can be developed and implemented. In fact, several research
groups have developed retrieval schemes based on this hybrid approach with some success.
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Section 3.3 explained in general terms how physically based models operate and con-
cluded by suggesting that they are accurate at estimating snow pack properties at micro-
scales of variation. Hence, the largest improvement to algorithms that estimate SWE or
snow depth at local to regional scales, is through the transformation of static methodolo-
gies into more spatially and dynamic algorithms. In other words, the algorithms need to
be flexible enough to estimate snow depth or SWE from snow packs that are continually
changing. Algorithm parameters require constant adjusting through the winter season to
reflect these changes. One approach that can achieve this dynamism is through the use of
microwave emission models that are parameterized by independently derived snow pack
properties or by optimizing the match of modelled and observed brightness temperatures
by adjusting the microwave emission model physical snow pack parameters.

Early theoretical studies of the microwave emission from snow used radiative transfer
models with some success (see Ulaby et al., 1981). Through improved understanding of
the physical snow pack evolution processes, these models have developed to new levels of
sophistication and accuracy in the simulation of the microwave response from snow (e.g.
Tsang et al., 2000; Wiesman and Mätzler, 1999). Emission models require parameter inputs
describing the physical properties of a snow pack (e.g. average grain size radius, volumetric
fraction of snow, vertical temperature profile) and this information can be derived from the
output of an energy or mass balance model of the snow. Hence, by using the emission
models in conjunction with energy or mass balance models of snow, several studies have
shown demonstrable improvements in SWE or snow depth estimation accuracy. While it
is not the purpose of this chapter to give detailed descriptions of these models, Figure 3.5a
shows a generalized implementation approach of a coupled snow model and microwave
radiative transfer model.

Weisman et al. (2000) coupled the microwave emission model of layered snowpacks
(MEMLS) with SNTHERM and Crocus (Brun et al., 1989) to estimate snow depth at
an alpine site in Switzerland. Half-hourly meteorological data were collected at the site
and input to SNTHERM or Crocus. These models predict a variety of snow pack prop-
erties including number of layers, thickness, temperature, density, liquid water content,
and grain size and shape of each layer. These estimates are then passed to the MEMLS
model which calculates brightness temperatures in the range between 5 GHz to 100 GHz
at a given linear polarization and at a prescribed incidence angle. These radiative trans-
fer calculations are based on empirically-derived scattering coefficients and physically
based absorption coefficients. Results showed that the estimated brightness temperatures
matched well with measurements made by ground-based radiometers nearby. Thus, the
results demonstrate that our understanding of the microwave interaction processes can be
translated into physical models. Chen et al. (2001) adopted a similar approach but this
time used only the SNTHERM model and a different form of radiative transfer model,
namely the dense media radiative transfer (DMRT) model based on the quasicrystalline
approximation with a sticky particle model. Tsang et al. (2000) give a full description of
this two-layer model. Compared with the MEMLS model, the DMRT has been applied to a
larger area in western USA (local scale) where SNOTEL data are input into the SNTHERM
model. Also, estimated emissions from the DMRT model are compared with actual SSM/I
brightness temperature observations and an inversion procedure is applied to produce a
final snow depth estimate. The results obtained from the approach are an improvement
over static, regression-based approaches. This is especially noteworthy since the region of
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Figure 3.5 Methodological approaches to SWE or snow depth estimation using hybrid snow
energy and mass balance models and microwave emission models. (a) represents the general
approach adopted by Chen et al. (2001) (Reproduced by permission of IEEE), and (b) represents
the method adopted by Pulliainen and Hallikainen (2001) (Reproduced permission of Elsevier
Science). Reprinted from Remote Sensing of Environment 75, J. Pulliainen and M. Hallikainen,
Retrieval of regional snow water equivalent from space-borne passive microwave observations,
76–85, c© (2001), with permission from Elsevier

implementation is mountainous terrain where standard ‘static’ algorithms have difficulty in
successful snow depth estimation. A constraint to the approach, however, is that it produces
the best results for medium snow grain sizes; further refinement to the model is required if
larger faceted grains develop.

The Helsinki University of Technology (HUT) snow emission model is different from the
two previous models in that it is semi-empirical in approach and it does not require frequent
externally derived snow state variables to estimate SWE. The model is based on radiative
transfer emission from snow plus semi-empirical parameterizations of forest, atmosphere
and soil (Pulliainen et al., 1999). It is parameterized by geographical information (perhaps
stored in a GIS) on forest stem volume, soil roughness and atmospheric optical thickness.
Estimates of brightness temperature ensembles are computed at each pixel and compared
with observed microwave data. An optimization routine then minimizes the error between
modelled and observed brightness temperature ensembles by iteratively adjusting the snow
physical properties in the model. Once the differences have been minimized, the iteration
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ceases and that SWE is the final estimate. Figure 3.5b shows a generalized diagram of
the methodology. SWE retrieval errors have been found to be less than static approaches
(Pulliainen and Hallikainen, 2001) with the smallest errors calculated for estimates in
Finland to be 20 mm SWE.

Each of the approaches outlined above has shown improvements over static SWE or
snow depth passive microwave algorithms. However, further improvement is still required
as the errors are still substantial. Also, the models described so far have only been applied
to local or small regional areas of interest where frequent and or high spatial resolution
ancillary data are available (meteorological inputs, terrain and vegetation cover data). The
challenge is to apply these methods to regions where the initialization data required for
the emission model or the snow energy or mass balance models is largely non-existent or
must be derived from outdated historical maps, large regional scale re-analysis or climate
model data. In the case of MEMLS and the DMRT implementations, this poses a signifi-
cant challenge since these models rely on frequent meteorological inputs from nearby
stations for forcing SNTHERM or Crocus. For the HUT model, detailed information about
stem volume is required along with atmospheric factors that are often unavailable at the
scale required. Therefore, even though these hybrid approaches are improvements on the
previous static algorithms, further research activity is required to enhance these models
so that they can be implemented globally. Kelly et al. (2002) have demonstrated that a
microwave emission model can be parameterized by a simple empirical model of grain
growth for which grain radius is estimated from evolution through the season and the
history of estimated temperature differences through the pack. It is based on the DMRT
approach of Tsang et al. (2000) but rather than use data from meteorological stations, sur-
face temperatures are estimated from an empirical relationship between SSM/I brightness
temperatures and surface temperature. The implementation is a simplified DMRT model
applied deterministically to estimate snow depth (inversion is not required). Despite its
simplicity in its current form, the results so far are an improvement on those from ‘static’
approaches; for the 2000–2001 winter in the northern hemisphere, the simplified DMRT
approach produced global seasonal estimates that were 3 cm of snow depth better than
the Foster et al. (1997) algorithm. It is expected therefore that for this global algorithm,
and the HUT and DMRT implementations, estimates of snow depth or SWE will improve
as parameterization and initialization datasets improve. Additionally, with radiometrically
enhanced passive microwave instrument technology such as AMSR-E, the errors will be
reduced even further.

3.6 Conclusion

In this chapter, we have examined the way in which (spatial) models are used in the
estimation of snow cover and especially snow depth or SWE. The variogram analysis
suggested that for point measurements of snow depth at meteorological stations, only
local-scale networks, where the station network is sufficiently dense (less than 1 per
40 km × 40 km area in the case of the COOP network), can quantify the spatial vari-
ability of snow depth. In regions where the cover is sparse, the representativeness of point
data is uncertain and should not be relied on to characterize the spatial variability of snow
depth. In the case of spatial estimates of snow depth or SWE, micro-scale variations are
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successfully represented by physically based models, which are dynamic in operation and
can estimate suites of snow hydrological parameters. At the local scale of variation, these
physically based models can also be used to estimate the changing SWE or snow depth
of a pack provided sufficient meteorological data inputs are available. As the area scales
to the regional domain, it is uncertain whether these models can be used successfully to
represent snow depth or SWE variability. Remote sensing retrievals, on the other hand, are
well suited to local to regional scale applications as demonstrated by the structure in the
variograms of snow depth estimates in Figure 3.4. However, the errors produced are still
large and need reduction before these estimates are adopted more generally. It seems that a
promising area of research in the form of hybrid physically based models and microwave
emission models should improve our estimates of SWE and snow depth at regional and
global scales. This is an interesting prospect since traditionally, snow mass or energy bal-
ance models have been subordinated by remote sensing application scientists or vice versa.
Davis et al. contend that “Ironically, we may soon see the use of high resolution, process-
detailed snow models to aid in interpolating ground measurements for validating remote
sensing algorithms to recover SWE” (2001, p. 283). Given the nature of snow depth or
SWE spatial variability, this seems entirely reasonable. If snow hydrology models are ca-
pable of estimating SWE at finer local scales, then it makes sense for passive microwave
estimates to be tested in regions where the hydrological models are accurate. Ultimately,
this will lend more weight to the validation of the passive microwave algorithms. Com-
prehensively validated algorithms should then be able to estimate SWE more accurately
in areas of the world where the hydrological models are incapable of providing reliable
estimates on account of sparse meteorological station networks. An even stronger reason
for using snow hydrology models is through their combination with microwave emission
models. Since the microwave emission signal from a snow pack is related in some way
to the SWE, a snow energy or mass balance hydrology model can be used to ‘unravel’
the microwave signal and provide a better, more dynamic estimate of SWE or snow depth.

It appears, therefore, that good potential exists for estimating SWE or snow depth and
characterizing their spatial variability using remote sensing and hydrological models of
snow energy or mass balance dynamics. However, while these models are in development,
there is a conspicuous lack of attention to validation frameworks of SWE or snow depth
estimates. This statement is an important one and perhaps liberal in scope since energy
balance models of snow have a strong tradition of rigorous validation. However, at the
scale at which they have been applied, the validation is relatively straightforward. At local
or regional scales, validation is less straightforward and has often been implemented in
not the most robust of ways. Typically, most validation exercises to test passive microwave
estimates have assumed that point measurements of SWE are ‘representative’ at the passive
microwave support scale (grid sizes of 25 km × 25 km). In some regions of the world this
may indeed be the case. However, passive microwave sub-grid scale heterogeneity of snow
depth or SWE is an important issue that requires some formal attention; how can hydrolo-
gists use existing point measurements at the footprint scale? Simple comparisons between
point measurements and areal estimates are often completely inappropriate, perhaps when
the site location is in a region where land cover is highly variable or terrain steep and
dissected and snow depth is highly variable; one point estimate of snow depth is unlikely
to represent accurately the spatial footprint average. Furthermore, if we persist with the
general approach of comparing point measurements of SWE with areal estimates from



C03 WU088/Kelly February 19, 2004 21:9 Char Count= 0

54 Spatial Modelling of the Terrestrial Environment

passive microwave models and algorithms, it is necessary to determine how many points
are needed to adequately perform the validation. More specifically, what is the mecha-
nism that determines the required density of snow measurement sites for a given accuracy
requisite of passive microwave estimate and how might this density vary with changing
SWE conditions or under different vegetation cover or terrain? This issue is an important
one that requires attention. One potential solution to this problem is to examine the possi-
bility of developing a more analytical approach to error propagation for the remote sensing
of SWE and snow depth. There is a large literature on the characterization of error in spatial
environemtal modelling (e.g. Heuvelink, 1998). It would probably be of great interest to
the remote sensing and snow hydrology community for a framework to be developed that
could be universally adopted for validation studies in this field. A key challenge with such
an approach is that all component variables in the algorithm, coupled model and ancillary
data require associated error estimates. In the case of the coupled SNTHERM and DMRT
approach, this would mean that for every variable used in the method, an error would need to
be derived and combined in an analytical method (such as the Taylor expansion) to produce
an overall estimation error statistic. This is quite some challenge since it is often very diffi-
cult to provide robust error quantities for many of the terms in SWE estimation algorithms
or hybrid models described previously. However, the advantage of such an approach would
be to make the estimates of SWE or snow depth highly attractive to many data users since
for each estimate of SWE an error term would also be generated. Specifically, snow product
users such as land surface modellers or climate modelling scientists who often require error
estimates along with the actual variable estimate would find this error approach of great
value.

In conclusion, then, there are various reasons why spatial models are used in the repre-
sentation of snow depth or SWE at various spatial scales. Some of the outstanding issues
concerning the estimation of SWE and snow depth will be addressed directly and indi-
rectly in the near future thanks to several new technological and scientific developments
in planning or under way. First, with the launch of Aqua and the availability of AMSR-E
data in the near future, the spatial scale of observation of snow from space will be the most
detailed ever. The potential to explore some of the spatial variability issues further will
be greatly enhanced. Furthermore, with science field experiments such as the NASA Cold
Lands Processes Experiment (CLPX), many of the questions regarding spatial variabil-
ity and spatial representativity of snow properties from micro- to local scales of variation
will be addressed (Cline et al., 2002). This is an important experiment involving many
teams of scientists undertaking laborious field experiments at the micro- and local scale.
However, with these prospects, it might be possible to begin developing a framework for
error estimation. Ultimately, the errors associated with snow depth and SWE estimation
from spacecraft instruments and terrestrial models should be reduced thereby enhancing
our ability to quantify the role of snow in the global hydrological cycle.
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